摘要
This paper has analyzed the influences of the heat input of the welding arc, the latent heat of solidification, the fluid flow of liquid metal on the heat conductivity pertaining to the welding solidification crack of stainless steels. As a result, two dimensional heat conduction models with the prescribed heat flux moving along the weld have been developed that can simulate welding arc, convection and radiation heat loss from top and bottom surfaces of the workpiece. Finally, the finite element model was used to analyze and calculate the temperature fields.
This paper has analyzed the influences of the heat input of the welding arc, the latent heat of solidification, the fluid flow of liquid metal on the heat conductivity pertaining to the welding solidification crack of stainless steels. As a result, two dimensional heat conduction models with the prescribed heat flux moving along the weld have been developed that can simulate welding arc, convection and radiation heat loss from top and bottom surfaces of the workpiece. Finally, the finite element model was used to analyze and calculate the temperature fields.
基金
the National Exploration Proposal