期刊文献+

Solvability Condition for Robust Stabilization Problem of Control Systems with Parameter Uncertainties 被引量:1

具有参数不确定性的控制系统鲁棒镇定问题的可解性(英文)
下载PDF
导出
摘要 Aim The solvability condition for robust stabilization problem associated with a plant family P(s,δ) having parameter uncertainty δ was considered. Methods Using Youla parameterization of the stabilizers this problem was transformed into a strong stabilization problem associated with a related plant family G (s, δ). Results A necessary solvability condition was established in terms of the parity interlacing property of each element in G(s,δ). Another apparently necessary solvability condition is that every element in P(s,δ) must be stabilizable. Conclusion The two conditions will be compared with each other and it will be shown that every element in G(s,δ) possesses parity interlacing property if P(s,δ) is stabilizable. 目的 考虑具有参数不确定性的控制对象族 P(s ,δ) 的鲁棒镇定问题的可解性. 方法通过镇定器的 Youla 参数化将鲁棒镇定问题化为某一相关对象族 G( s,δ) 的强镇定问题. 结果给出鲁棒镇定问题可解的一个必要条件,即 G(s,δ) 的每个元素都应具有parityinterlacing 性质. 鲁棒镇定问题可解的另一个明显的必要条件是 P(s,δ) 可镇定. 结论 如果 P(s,δ) 可镇定,则 G(s,δ) 的每个元素都具有parity interlacing 性质.
作者 伍清河
出处 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期258-263,共6页 北京理工大学学报(英文版)
基金 国家自然科学基金 国家教委留学回国人员科研资助
关键词 robust stabilization parameter uncertainties strong stabilization parity interlacing property 鲁棒镇定 参数不确定性 强镇定 parityinterlacing性
  • 相关文献

同被引文献5

  • 1[1]Youla D C, Bongiorno J J, Lu C N. Single-loop feedback stabilization of linear multivariable plants [J]. Automatica, 1974,10:159-173.
  • 2[2]Vidyasargar M. Control systems synthesis: A factorization approach[M]. Cambridge: MIT Press, 1985.
  • 3[3]Barmish B R. New tools for robustness of linear systems[M]. New York: Macmillan Publishing Company, 1994.
  • 4[4]Barmish B R, Tempo R. The robust root locus[J]. Automatica,1990,26(2):283-292.
  • 5[6]Wu Qinghe, Mansour M. Robust stability analysis of control systems with parameter uncertainties: A eigenvalue approach [Z]. The 14th IFAC World Congress, Beijing, 1999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部