摘要
As a western boundary current, the Kuroshio is closely related to the large scale oceanic circulation and at the same time, is greatly influenced by the local topography because of its narrow width. Numerical studies of the Kuroshio are usually confined to portions of it in different geographical regions since the computer execution time required to run a numerical model of the Pacific using a sufficiently fine grid to resolve adequately the flow structure of the Kuroshio is enormous. In order to circumvent the problems of multiple spatial scales and consistent boundary conditions, nested models are employed in which a coarse grid model of the Pacific is used to supply the open boundary conditions for a finer grid model of the northwestern Pacific to simulate the flow and temperature fields of the Kuroshio in summer and winter. The major features of the Kuroshio have in general been successfully simulated by the nested models.
As a western boundary current, the Kuroshio is closely related to the large-scale oceanic circulation and at the same time, is greatly influenced by the local topography because of its narrow width. Numerical studies of the Kuroshio are usually confined to portions of it in different geographical regions since the computer execution time required to run a numerical model of the Pacific using a sufficiently fine grid to resolve adequately the flow structure of the Kuroshio is enormous. In order to circumvent the problems of multiple spatial scales and consistent boundary conditions, nested models are employed in which a coarse grid model of the Pacific is used to supply the open boundary conditions for a finer grid model of the northwestern Pacific to simulate the flow and temperature fields of the Kuroshio in summer and winter. The major features of the Kuroshio have in general been successfully simulated by the nested models.
基金
ThisworkwassupportedbyHongKongPolytechnicUniversityResearchGrantNo.3 4 0 / 854