摘要
应用W22空间中的再生核,构造了一种求第一类算子方程Au=f的Hermite数值解u2n的新方法。证明了当节点系在[a,b]中稠密时,u2n(x)一致收敛到方程的解析解u(x)。u′2n(x)一致收敛到u′(x),并且误差按空间范数单调下降。
By the use of reproducing kernel of W 2 2, a new method for finding the hermite numerical solution u 2n (x) of the first kind operator equation Au=f is constructed. It is also proved that u 2n (x) uniformly converge to the analytic solution u (x) of the equation, u′ 2n (x) uniformly converge to u′(x) as the nodes become dense in a,b ; furthermore, the error decreases monotonically in the sense of space norm.
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
1998年第2期51-55,共5页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
黑龙江省自然科学基金
关键词
算子方程
数值解
再生核
一致收敛
operator equation
numerical solution
reproducing kernel
convergence uniform