摘要
一、(本题满分50分)如图,O、I分别为ABC的外心和内心,AD是BC边上的高,I在线段OD上.求证:△ABC的外接半径等于BC的旁切圆半径.注:△ABC的BC边上的旁切是与边AB、AC的延长线以及边BC相切的.证明 设AI的延长钱交圆ABC于K点,半径OK记为R.因为OK⊥BC,所以OK∥AD,从而AI/IK=AD/OK=c·sinB/R=2sinBsinC①AI/IK=S△ABI/S△KBI=[1/2AB·BI·SINB/2]/[1/2BK·BI·SIN(A+B)/2]=AB/BK·[sinB/2/(cosC/2)]