期刊文献+

一九九八年全国高中数学联合竞赛加试试题及解答

下载PDF
导出
摘要 一、(本题满分50分)如图,O、I分别为ABC的外心和内心,AD是BC边上的高,I在线段OD上.求证:△ABC的外接半径等于BC的旁切圆半径.注:△ABC的BC边上的旁切是与边AB、AC的延长线以及边BC相切的.证明 设AI的延长钱交圆ABC于K点,半径OK记为R.因为OK⊥BC,所以OK∥AD,从而AI/IK=AD/OK=c·sinB/R=2sinBsinC①AI/IK=S△ABI/S△KBI=[1/2AB·BI·SINB/2]/[1/2BK·BI·SIN(A+B)/2]=AB/BK·[sinB/2/(cosC/2)]
出处 《中学数学教学》 1998年第6期40-41,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部