摘要
This paper is concerned with fatigue behavior of glass fiber reinforced aluminium laminates (GLARE) under overload fatigue loading. The effect of single overload on the crack growth rates in GLARE was investigated, and the mechanism of the retardation of crack growth determined. Crack growth retardation by overload was observed in GLARE, but much smaller than monolithic metals. The retardation of crack growth in GLARE is only controlled by the effective stress intensity factor experienced by the constituent metals at crack tips.
This paper is concerned with fatigue behavior of glass fiber reinforced aluminium laminates (GLARE) under overload fatigue loading. The effect of single overload on the crack growth rates in GLARE was investigated, and the mechanism of the retardation of crack growth determined. Crack growth retardation by overload was observed in GLARE, but much smaller than monolithic metals. The retardation of crack growth in GLARE is only controlled by the effective stress intensity factor experienced by the constituent metals at crack tips.