期刊文献+

HYDROGEN PHOTOPRODUCTION OF A.VARIABILIS INCORPORATED IN A PHOTOBIOREACTOR

HYDROGEN PHOTOPRODUCTION OF A. VARIABILIS INCORPORATED IN A PHOTOBIOREACTOR
下载PDF
导出
摘要 H2 photoproduction and nitrogenase activities in two strains of Anabaena variabilismarked wild type ATCC 29413 and mutant PK84 exposed to thermal stress (temperature higher than thenormal incubation temperature of 30℃) were studied. Cultures of both strains collected from any intervalof logarithmic growth phase exhibited high H2 photoproduction and nitrogenase activities when exposed tolimited time heat shock during the assay process. In contrast, the algal H2 photoproduction rate of bothstrains fluctuated with long term thermal stress caused hy increasing the growth temperature from 30℃ to36℃.The changes of nitrogenase (the key H2 photobiosynhetic enzyme) activities in the mutant PK84showed variation tendency similar to that of H2 photoproduction during exposure to thermal stress, indicat-ing that fluctuation of H2 photopnduction in the mutant was mainly due to the variation of nitrogenase ac-tivities. A temporary maximal H2 photoproduction in the mutant PK84 (wild type ATCC29413 ) was ob-served when cells po at 36℃ for 14 (6) days. However, the responses of nitrogenase activities in thewild type to thermal stress were not completely similar to those in the mutant in spite of similar variationsof H2 photoproduction in both strains. The data obtained in these studies suggested tha the activities ofother enzymes (in the wild strain) involved in H2 photoproduction were affected by thermal stress since H2photoporduction maximized or dropped to 0 without variation tendency similar to that of nitrogenase activi-ties.Furthermore, an enhancement of H2 photoproduction speed of the mutant strain cultured in a 4.4 Llaboratory photobioreactor was also observed when it was subjected to short time continuous charge of ar-gon, and temperature rise.All these results indicated that high temperature plays an important role in the photo-autotrophic H2photoproduction, and that long term thermal stress is unfavourable for net H2 phooproduction in bothstrains of A. variabilis though short-time heat shock is conducive to H2 photoproduction. H2 photoproduction and nitrogenase activities in two strains of Anabaena variabilismarked wild type ATCC 29413 and mutant PK84 exposed to thermal stress (temperature higher than thenormal incubation temperature of 30℃) were studied. Cultures of both strains collected from any intervalof logarithmic growth phase exhibited high H2 photoproduction and nitrogenase activities when exposed tolimited time heat shock during the assay process. In contrast, the algal H2 photoproduction rate of bothstrains fluctuated with long term thermal stress caused hy increasing the growth temperature from 30℃ to36℃.The changes of nitrogenase (the key H2 photobiosynhetic enzyme) activities in the mutant PK84showed variation tendency similar to that of H2 photoproduction during exposure to thermal stress, indicat-ing that fluctuation of H2 photopnduction in the mutant was mainly due to the variation of nitrogenase ac-tivities. A temporary maximal H2 photoproduction in the mutant PK84 (wild type ATCC29413 ) was ob-served when cells po at 36℃ for 14 (6) days. However, the responses of nitrogenase activities in thewild type to thermal stress were not completely similar to those in the mutant in spite of similar variationsof H2 photoproduction in both strains. The data obtained in these studies suggested tha the activities ofother enzymes (in the wild strain) involved in H2 photoproduction were affected by thermal stress since H2photoporduction maximized or dropped to 0 without variation tendency similar to that of nitrogenase activi-ties.Furthermore, an enhancement of H2 photoproduction speed of the mutant strain cultured in a 4.4 Llaboratory photobioreactor was also observed when it was subjected to short time continuous charge of ar-gon, and temperature rise.All these results indicated that high temperature plays an important role in the photo-autotrophic H2photoproduction, and that long term thermal stress is unfavourable for net H2 phooproduction in bothstrains of A. variabilis though short-time heat shock is conducive to H2 photoproduction.
作者 刘建国
出处 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1998年第S1期118-126,共9页 中国海洋湖沼学报(英文版)
关键词 H<sub>2</sub> PHOTOPRODUCTION ANABAENA variabilis thermal stress MUTANT PHOTOBIOREACTOR H_2 photoproduction, Anabaena variabilis, thermal stress, mutant, photobioreactor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部