期刊文献+

FABRICATION OF Ti/SiC MMCs BY VACUUM HOT PRESSING WITH AID OF HYDROGEN 被引量:2

FABRICATION OF Ti/SiC MMCs BY VACUUM HOT PRESSING WITH AID OF HYDROGEN
下载PDF
导出
摘要 In order to alleviate the severe interface reaction, which is likely to occur during the fabrication of continuous SiC fiber reinforced titanium matrix composite, hydrogen was temporarily introduced in the fabrication to lower the consolidation temperature of Ti/SiC composites in the present work. Effects of different fabrication conditions, with or without hydrogen, on the bonding state and the matrix microstructure were investigated. In-situ hydrogenation method was found to larpely improve the interface bonding of the composite, and full consolidation could be achieved at 750 or even 700° C more than 100°C lower than the normal fabrication temperature of Ti/SiC composite, which consequently reduced the interfacial reaction layer between Ti matrix and SiC fiber. Different hydrogenation condition led to different matrix microstructure. In order to avoid the embrittling effect of residual hydrogen on the composite,Ti/SiC composite needs to be held in vacuum at the fabrication temperature for longer time after consolidation. In order to alleviate the severe interface reaction, which is likely to occur during the fabrication of continuous SiC fiber reinforced titanium matrix composite, hydrogen was temporarily introduced in the fabrication to lower the consolidation temperature of Ti/SiC composites in the present work. Effects of different fabrication conditions, with or without hydrogen, on the bonding state and the matrix microstructure were investigated. In-situ hydrogenation method was found to larpely improve the interface bonding of the composite, and full consolidation could be achieved at 750 or even 700° C more than 100°C lower than the normal fabrication temperature of Ti/SiC composite, which consequently reduced the interfacial reaction layer between Ti matrix and SiC fiber. Different hydrogenation condition led to different matrix microstructure. In order to avoid the embrittling effect of residual hydrogen on the composite,Ti/SiC composite needs to be held in vacuum at the fabrication temperature for longer time after consolidation.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第4期307-312,共6页 金属学报(英文版)
关键词 Ti/SiC composite HYDROGEN microstructure Ti/SiC composite, hydrogen, microstructure
  • 相关文献

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部