期刊文献+

Nonlinear version of Holub's theorem and its application 被引量:1

Nonlinear version of Holub's theorem and its application
全文增补中
导出
摘要 Holub proved that any bounded linear operator T or -T defined on Banach space L 1(μ) satisfies Daugavet equation1+‖T‖=Max{‖I+T‖, ‖I-T‖}.Holub’s theorem is generalized to the nonlinear case: any nonlinear Lipschitz operator f defined on Banach space l 1 satisfies1+L(f)=Max{L(I+f), L(I-f)},where L(f) is the Lipschitz constant of f. The generalized Holub theorem has important applications in characterizing the invertibility of nonlinear operator. Holub proved that any bounded linear operator T or ?T defined on Banach space L1(μ) satisfies Daugavet equation 1 + ∥T ∥ = Max {∥I + T ∥, ∥I ?T ∥ }. Holub’s theorem is generalized to the nonlinear case: any nonlinear Lipschitz operatorf defined on Banach space l1 satisfies 1 + L(f) = Max {L(I +f), L(I?f)}, where L(f) is the Lipschitz constant off. The generalized Holub theorem has important applications in characterizing the invertibility of nonlinear operator.
出处 《Chinese Science Bulletin》 SCIE EI CAS 1998年第2期89-91,共0页
基金 DoctorateFoundationofXi’anJiaotongUniversity .
关键词 NONLINEAR LIPSCHITZ OPERATOR Holub THEOREM Daugavet EQUATION INVERTIBILITY of operator. nonlinear Lipschitz operator Holub theorem Daugavet equation invertibility of operator
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部