摘要
An upper bound is established on the parameter Γ -(G) for a cubic graph G and two infinite families of 3-connected graphs G k, G * k are constructed to show that the bound is sharp and, moreover, the difference Γ -(G * k)-γ s(G * k) can be arbitrarily large, where Г -(G * k) and γ s(G * k) are the upper minus domination and signed domination numbers of G * k, respectively. Thus two open problems are solved.
An upper bound is established on the parameter Γ -(G) for a cubic graph G and two infinite families of 3-connected graphs G k, G * k are constructed to show that the bound is sharp and, moreover, the difference Γ -(G * k)-γ s(G * k) can be arbitrarily large, where Г -(G * k) and γ s(G * k) are the upper minus domination and signed domination numbers of G * k, respectively. Thus two open problems are solved.