期刊文献+

BOUNDARY LAYER ESTIMATION OF THE QUASILINEAR STOKES EQUATIONS

BOUNDARY LAYER ESTIMATION OF THE QUASILINEAR STOKES EQUATIONS
下载PDF
导出
摘要 We first prove the existence and uniqueness of solution of quasilinear Stokes equations. Then it is shown when the viscosity vanishes, the solution of the quasilinear Stokes equations tends to the solution of the degenerate equations, in which the viscous term is omitted from the quasilinear Stokes equations and the boundary condition is weakened. In the end, we obtain the boundary layer estimation, Our result shows that the thickness of the boundary layer is proportional to epsilon(1/4). We first prove the existence and uniqueness of solution of quasilinear Stokes equations. Then it is shown when the viscosity vanishes, the solution of the quasilinear Stokes equations tends to the solution of the degenerate equations, in which the viscous term is omitted from the quasilinear Stokes equations and the boundary condition is weakened. In the end, we obtain the boundary layer estimation, Our result shows that the thickness of the boundary layer is proportional to epsilon(1/4).
作者 何成
出处 《Acta Mathematica Scientia》 SCIE CSCD 1997年第4期413-428,共16页 数学物理学报(B辑英文版)
关键词 quasilinear Stokes equations degenerate equations boundary layer quasilinear Stokes equations degenerate equations boundary layer
  • 相关文献

参考文献11

  • 1Paul C. Fife.Considerations regarding the mathematical basis for Prandtl’s boundary layer theory[J]. Archive for Rational Mechanics and Analysis . 1968 (3)
  • 2Lions J L.Non-Homogenous Boundary Value Problems and Application, Volume I. . 1972
  • 3Chlichting H.Boundary Layer Theory, 7th edition. . 1979
  • 4Oleinik O.The Prandtl system of equations in boundary layer theory.Dokl. Akad. Nauk S. S.S.R.150 . 1963
  • 5Yosida H.Functional analysis. . 1980
  • 6Stein E M.Singular Integrals and Differentiability Properties of Functions. . 1970
  • 7Temam R.Navier-Stokes equations. . 1977
  • 8Temam R,Wang Xiaoming.Asymptotic analysis of the linearized Navier-Stokes equations in a channel. Differential and Integral Equations . 1995
  • 9Ladyzhenskaya O A.The Mathematical Theory of Viscous incompressible Flow. . 1969
  • 10Zhang Weitao.Boundary layer estimation of an equation of order 4.J.Sys.Sci & Math. Sds . 1983

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部