摘要
A multizone/multiblock coupled RANS equation solver is presented to numerically simulate the viscous flow around an appended submarine model at Reynolds number 1. E7. k-ε two equation turbulenc model together with wall function are used. The resulting finite difference equations are solved by SIMPLEC, ADI. The technique of rising up the bottom surface is presented to overcome radial contraction problem in Cartesian coordinate system. Benchmark numerical calculations have been compared with experimental data, the radial distribution of axial velocity on the propeller disk plane is 4. 63%.
A multizone/multiblock coupled RANS equation solver is presented to numerically simulate the viscous flow around an appended submarine model at Reynolds number 1. E7. k-ε two equation turbulenc model together with wall function are used. The resulting finite difference equations are solved by SIMPLEC, ADI. The technique of rising up the bottom surface is presented to overcome radial contraction problem in Cartesian coordinate system. Benchmark numerical calculations have been compared with experimental data, the radial distribution of axial velocity on the propeller disk plane is 4. 63%.