摘要
Burning resistivities of the Ti Cr V Mo alloys were investigated by means of their adiabatic flame temperatures. Calculated results show that the adiabatic flame temperature of the Ti Cr V Mo alloys is lower than that of the Ti Cr V alloys, most probably due to that the gas products of molybdenum oxide can be easily formed and the sublimation of more oxides leads to the reduction of T af . Therefore, the Ti Cr V Mo alloys would have better burning resistivity and their optimal composition is presented.
Burning resistivities of the Ti Cr V Mo alloys were investigated by means of their adiabatic flame temperatures. Calculated results show that the adiabatic flame temperature of the Ti Cr V Mo alloys is lower than that of the Ti Cr V alloys, most probably due to that the gas products of molybdenum oxide can be easily formed and the sublimation of more oxides leads to the reduction of T af . Therefore, the Ti Cr V Mo alloys would have better burning resistivity and their optimal composition is presented.