摘要
闭区间[a,b]上的连续函数一定能取到最大和最小值.那些点有可能是最值点呢?现行教材《微积分》一书(由马兴波主编,西南交通大学出版社出版)指出:[a.b]上连续函数的最大(小)值仅可能在区间内的极值点和区间端点处取得.我认为这种说法是不正确的.事实上有些连续函数,其最值也可以在非极值点和非端点处取得.例如函数在闭区间[3/2,6]是连续的,但是最小值是在小闭区间[3,4]上的所有点处取得。根据极值点的定义知[3,4]上的点不是极值点.函数图形如右图:上书还指出:在特殊情况下,如果连续函数在(a,b)内仅有一个极值点.而函数在该点确有极大(小)值,则函数在该点的值就是函数在[a,b]上的最大(小值).这种说法也不正确,以上面所举函数为例,从图形上看到x=2是函数在(3/2,6)内唯一一个极值点,且函数在该点确有极大值,但函数在[3/2,6]上的最大值在端点x=6取到,而不是在x=2处取到.以上两个错误产生的原因是忽视了一个事实:若是[a,b]上的连续函数在(a,b)内的一个最大(小)值点,
出处
《内蒙古师范大学学报(教育科学版)》
1997年第4期44-44,共1页
Journal of Inner Mongolia Normal University:Educational Science Edition