摘要
Upon the conservation of mass, momentum and energy, volume fraction and surface penetrative rate were employed to modify the conservative equations to simulate the effect of blockages on fluid flows and heat transfer. These equations were solved numerically with the finite differential method and the primitive variable approach. This method uses staggered grid and pressure correction schemes. A computer code FASTOR3D integrated the aforementioned algorithm. The preliminary results have been compared with conventional benchmark solutions. With auxiliary software DV, the numerical results were visualized in colorful images to demonstrate the variation of flow patterns and temperature profiles during the transient process. The results of the simulation code for the fluid flows and heat transfer in the sodium pool of a fast breeder reactor are acceptable.
ACOMPUTERCODEFASTOR┐3DFORTRANSIENTTHREE┐DIMENSIONALSIMULATIONONFLOWANDHEATTRANS┐FERWITHPOROSITYAPPROXIMATION*LuWancheng(卢万成)D...