摘要
In this paper, the influeuce of B on mechanical properties and microstructure of weld metal from B4C surfacing alloy is studied’ Results show that increasing boron content leads to sharp increasing of harduess and wear-resistance of weld metal’ And micrestructure transforms gradually from hypoeutectoid to hypereutectic with Fe3C-type carbide transforming into Fe3 (C, B)- and Fe23 (C, B ),-type carbon-boride. And in hypereutectic micrestructure even segregates out high-hardness phase Fe2B. As eutectic mainly consists of a phase and Fe23 (C,B),’ Fe3 (C,B) and distributes homogenously in network, which makes surfaced alloy have kigh impact resistance.
In this paper, the influeuce of B on mechanical properties and microstructure of weld metal from B4C surfacing alloy is studied' Results show that increasing boron content leads to sharp increasing of harduess and wear-resistance of weld metal' And micrestructure transforms gradually from hypoeutectoid to hypereutectic with Fe3C-type carbide transforming into Fe3 (C, B)- and Fe23 (C, B ),-type carbon-boride. And in hypereutectic micrestructure even segregates out high-hardness phase Fe2B. As eutectic mainly consists of a phase and Fe23 (C,B),' Fe3 (C,B) and distributes homogenously in network, which makes surfaced alloy have kigh impact resistance.