摘要
本文通过定义牛顿算子、选择算子、混合数据结构以及适应度函数,得到非线性动态系统的非线性参数估计的混合计算智能算法.该算法结合了遗传算法(GA)和牛顿法两者长处,既有较快收敛性,又能以较大概率求得全局解(一致收敛估计).数值计算结果表明了该方法显著优于 GA 和牛顿法.
In this paper,a Newtonian operator,a selecting operator,a mixed numerical structure,and a fitness function are defined and then a hybrid computational-intel- ligent algorithm for estimating nonlinea parameters of nonlinear dynamical systems is proposed.The new algorithm with the faster convergence and the greater prob- ability for the global solution(consistently convergence estimates)combines the advantages of both the genetic algorithm and the Newtonian algorithm.The nu- merical computing results show that the algorithm is distinctly superior to the ge- netic algorithm or the Newtonian algorithm.
出处
《应用基础与工程科学学报》
EI
CSCD
1997年第1期97-103,共7页
Journal of Basic Science and Engineering
基金
本文得到武汉市科委"晨光计划"的资助
关键词
参数估计
非线性系统
计算智能
遗传算法
牛顿法
parameter estimation
nonlinear systems
computational intelligent
genetic algorithm
newtonialn algorithm