期刊文献+

EXPERIMENTAL STUDY OF FRETTING WEAR OF TITANIUM ALLOY BEFORE AND AFTER LASER BEAM QUENCHING 被引量:4

EXPERIMENTAL STUDY OF FRETTING WEAR OF TITANIUM ALLOY BEFORE AND AFTER LASER BEAM QUENCHING
下载PDF
导出
摘要 The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude. The effects of amplitudes, normal loads and laser beam quenching on the fretting wear of titanium alloy (TC11) were experimentally investigated on SRV fretting wear test machine in air, at room temperature and without lubrication conditions. The purpose of this study is to learn the rules of fretting wear in a disk blades dovetail joint of an aircraft turbine so the test parameters are determined based on the relative movement and load in the joint. The wear depths are measured by a profilometer, the worn areas are observed and measured by an optical microscopy, and the microtopography of the worn scar is studied by scanning electron microscopy (SEM) .The tests and observations state clearly that fretting wear rate (FWR) is heavily influenced by sliding amplitude(SA) and load. In this experiment, if SA is greater than 60 μm at Hertz contact stress 105 MPa, the FWR is much higher, and the SEM makes it known that the wear mechanism is the combination of adhesive and contact fatigue in the above test conditions. In contrast, if SA smaller, the FWR lower too, and the SEM suggests that the major wear mechanism is contact fatigue. The experiments also reveal that the laser beam quenching greatly improve the fretting wear resistance of titanium alloy, especially at heavy load and large amplitude.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期48-53,共6页 中国航空学报(英文版)
关键词 fretting wear laser beams quenching (cooling) titanium alloys fretting wear, laser beams, quenching (cooling), titanium alloys
  • 相关文献

同被引文献29

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部