期刊文献+

DIAGNOSTIC CHECKING FOR TIME SERIES MODELS USING NONPARAMETRIC APPROACH

DIAGNOSTIC CHECKING FOR TIME SERIES MODELS USING NONPARAMETRIC APPROACH
下载PDF
导出
摘要 In time series modeling, the residuals are often checked for white noise and normality. In practice, the useful tests are Ljung Box test. Mcleod Li test and Lin Mudholkar test. In this paper, we present a nonparametric approach for checking the residuals of time series models. This approach is based on the maximal correlation coefficient ρ 2 * between the residuals and time t . The basic idea is to use the bootstrap to form the null distribution of the statistic ρ 2 * under the null hypothesis H 0:ρ 2 * =0. For calculating ρ 2 * , we proposes a ρ algorithm, analogous to ACE procedure. Power study shows this approach is more powerful than Ljung Box test. Meanwhile, some numerical results and two examples are reported in this paper. 提出一种时间序列模型残差诊断捡验的非参数方法.基于残差与时间t的最大相关系数ρ2*,在零假设H0∶ρ2*=0下,用Bootstrap方法建立统计量ρ2*的零分布。为计算ρ2*,提出了一种与ACE算法相似的ρ算法。有效性分析表明该方法比Ljung-Box检验更有效。同时还列出一计算机模拟结果和两个实例.
出处 《Transactions of Tianjin University》 EI CAS 1997年第1期45-49,共5页 天津大学学报(英文版)
关键词 BOOTSTRAP diagnostic checking nonparametric approach time series white noise ρ algorithm Bootstrap方法 诊断检验 非参数方法 时间序列 白噪声 ρ算法
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部