摘要
Derive L-2-error bounds for Lax-Friedrichs schemes for discontinuous solutions oflinear hyperbolic convection equations.It is known that the Lax-Friedrichs scheme is a firstorder scheme.Analyzes convergent rate of the scheme through its modified equations andshows that the first order Lax-Friedrichs scheme to approach BV solutions of the convectionequation has L ̄2-error bounds of O(△x ̄(1/4)),where △x is the discrete mesh length.Nemericalexperiments are presented and numerical results justify the theoretical analysis.
对线性双曲型对流方程的间断解导出Lax-Friedrichs格式的L2误差界,Lax-Friedrichs格式是一阶格式,通过格式的修正方程研究格式的收敛速度,并证明一阶Lax,Friedrichs格式逼近对流方程的BV解的L2误差界是0(Axtl‘),其中△为网格步长。本文还给出了数值算例,其数值结果与理论分析一致。