期刊文献+

MUSCL TYPE SCHEMES AND DISCRETE ENTROPY CONDITIONS 被引量:1

MUSCL TYPE SCHEMES AND DISCRETE ENTROPY CONDITIONS
原文传递
导出
摘要 In this paper, the semi-discrete entropy conditions with so called the proper discrete entropy flux of a class of high resolution MUSCL type schemes are discussed for genuinely nonlinear scalar conservation laws. It is shown that the high resolution schemes satisfying such;semi-discrete entropy conditions cannot preserve second order accuracy in the rarefaction region. In this paper, the semi-discrete entropy conditions with so called the proper discrete entropy flux of a class of high resolution MUSCL type schemes are discussed for genuinely nonlinear scalar conservation laws. It is shown that the high resolution schemes satisfying such;semi-discrete entropy conditions cannot preserve second order accuracy in the rarefaction region.
作者 Zhao, N Wu, HM
出处 《Journal of Computational Mathematics》 SCIE EI CSCD 1997年第1期72-80,共9页 计算数学(英文)
关键词 Computational fluid dynamics Convergence of numerical methods Nonlinear equations Numerical methods Computational fluid dynamics Convergence of numerical methods Nonlinear equations Numerical methods
  • 相关文献

同被引文献9

  • 1Harten A.High Resolution Schemes for Conservation Laws. Journal of Computational Physics . 1983
  • 2E. Tadmor.Numerical viscosity and the entropy condition for conservative difference schemes. Mathematics of Computation . 1984
  • 3Harten,A,Osher,O.Uniformly high-order accurate essentially non oscillatory schemes. Numerical Analysis . 1987
  • 4Osher,S.,Chakravarthy,C.High-resolution schemes and the entropy condition. SIAM Journal on Numerical Analysis . 1984
  • 5Osher,S.,Tadmor,E.On the convergence of difference approximations to scalar conservation laws. Mathematics of Computation . 1988
  • 6C.-W. Shu,S. Osher.TVB uniformly high-order schemes for conservation laws. Mathematics of Computation . 1987
  • 7F. Coqual,Ph. LeFloch.Convergence of finite deference schemes for conservation laws in severalspace dimensions: general theory. SIAM Journal on Numerical Analysis . 1993
  • 8F. Coqual,Ph. LeFloch.Convergence of finite difference schemes for conservation laws in severalspace dimensions: the corrected antidiffusion flux approach. Mathematics of Computation . 1991
  • 9N. Zhao,H. Tang.High resolution schemes and discrete entropy conditions for 2-d linear conservation laws. Journal of Computational Mathematics . 1995

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部