摘要
Banach空间X的Maluta常数D(X)定义为D(X)=sup{limsup d(X_(n+1),co(x_1,… ,x_n)):{X_n}是X中的序列且diam(X_n)=1}.本文主要讨论任何无限维闭子空间的Maluta常数不变的Banach空间同时建立了Maluta常数与光滑模的一个不等式.
D(X)=sup{[lim d (Xn+1, CO(X1,…,Xn))n→∞]/[diam(Xn)]: (Xn) is a bounded nonconstant sequence inX} is called the Maluta coefficient of Banach space X. In this paper we consider the permanence properties of Maluta coefficients and verify the inequality of the Maluta coefficient and the modulus of smoothness.
出处
《湖北师范学院学报(自然科学版)》
1997年第3期13-16,共4页
Journal of Hubei Normal University(Natural Science)