摘要
In this study, we use inexact newton methods to find solutions of nonlinear, nondifferenti-able operator equations on Banach spaces with a convergence structure. This technique involves the introduction of a generalized norm as an operator from a linear space into a partially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover , this approach allmvs us to derive from the same theorem, on the one hand, semi-local results of Kantorovich-type, and on the other hand, global results based on mono-tonicity considerations. Furthermore, ive show that special cases of our results reduce to the corresponding ones already in the literature. Finally > our results are used to solve integral equations that cannot be solved with existing methods.
In this study, we use inexact newton methods to find solutions of nonlinear, nondifferenti-able operator equations on Banach spaces with a convergence structure. This technique involves the introduction of a generalized norm as an operator from a linear space into a partially ordered Banach space. In this way the metric properties of the examined problem can be analyzed more precisely. Moreover , this approach allmvs us to derive from the same theorem, on the one hand, semi-local results of Kantorovich-type, and on the other hand, global results based on mono-tonicity considerations. Furthermore, ive show that special cases of our results reduce to the corresponding ones already in the literature. Finally > our results are used to solve integral equations that cannot be solved with existing methods.