摘要
Using the spin trapping technique, the interaction between fulvic acids (FAs) of different origins and the active oxygen radicals was studied. The active oxygen radicals under study included superoxide anion (O2 · -) produced by xanthine oxidase (XOD) and stimulated polymorphonuclear leukocytes (PMN) of human being and hydroxyl radical ( ·OH) produced from Fenton’s reaction. It has been found that the FAs from both Kaschin-Beck disease (KBD) region and non-KBD region can accelerate the production of ·OH and scavenge O2 ·- . FA from peat can scavenge both O2·- and ·OH. The results show that the behavior of KBD and non-KBD FAs differs clearly from peat FA. It has been concluded that the superoxidation damage of KBD induced by FA is mainly due to hydroxyl radical reaction initiated in biological system.
Using the spin trapping technique, the interaction between fulvic acids (FAs) of different origins and the active oxygen radicals was studied. The active oxygen radicals under study included superoxide anion (O2 · -) produced by xanthine oxidase (XOD) and stimulated polymorphonuclear leukocytes (PMN) of human being and hydroxyl radical ( ·OH) produced from Fenton's reaction. It has been found that the FAs from both Kaschin-Beck disease (KBD) region and non-KBD region can accelerate the production of ·OH and scavenge O2 ·- . FA from peat can scavenge both O2·- and ·OH. The results show that the behavior of KBD and non-KBD FAs differs clearly from peat FA. It has been concluded that the superoxidation damage of KBD induced by FA is mainly due to hydroxyl radical reaction initiated in biological system.
基金
Project supported by the National Natural Science Foundation of China.