摘要
The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in elliptic form is for the electric potential; two equations of convection-dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Characteristic finite difference schemes for two kinds of boundary value problems are put forward. By using the thick and thin grids to form a complete set and treating the product threefold-quadratic interpolation, variable time step method with the boundary condition, calculus of variations and the theory of prior estimates and techniques, the optimal error estimates in L2 norm are derived in the approximate solutions.
The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in elliptic form is for the electric potential; two equations of convection-dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Characteristic finite difference schemes for two kinds of boundary value problems are put forward. By using the thick and thin grids to form a complete set and treating the product threefold-quadratic interpolation, variable time step method with the boundary condition, calculus of variations and the theory of prior estimates and techniques, the optimal error estimates in L2 norm are derived in the approximate solutions.
基金
Project supported by the National Scaling Program,the National Eighth-Five Year Tackling Key Problems Program and the Doctoral Found of the National Education Commission.