摘要
The N-terminal signal sequence of glucitol pcrmease of Escherichia Coli (Gut22) and its analogue (Gut22Ana) were synthesized. The analogue had a Pro residue substituting for the His at the 7th position of Gut22 and a Val residue substituting for the Glu at the 10th position. The intrinsic fluorescence emission spectra indicated that the binding of Gut22 with lipid bilayer was much stronger than that of Gut22Ana. The leakage experiments with calcein-loaded liposomes showed that Gut22 strongly perturbed lipid bilayers while Gut22Ana did not. The apparent partition constant of Gut22 for partitioning into phosphatidylserine/phosphatidylcholine bilayers was measured; the effect of membrane potential on the interaction of Gut22 with lipid bilayers was studied and the conformation changes of Gut22 and Gut22Ana upon interacting with liposomes were studied by the method of circular dichroism analysis.
The N-terminal signal sequence of glucitol pcrmease of Escherichia Coli (Gut22) and its analogue (Gut22Ana) were synthesized. The analogue had a Pro residue substituting for the His at the 7th position of Gut22 and a Val residue substituting for the Glu at the 10th position. The intrinsic fluorescence emission spectra indicated that the binding of Gut22 with lipid bilayer was much stronger than that of Gut22Ana. The leakage experiments with calcein-loaded liposomes showed that Gut22 strongly perturbed lipid bilayers while Gut22Ana did not. The apparent partition constant of Gut22 for partitioning into phosphatidylserine/phosphatidylcholine bilayers was measured; the effect of membrane potential on the interaction of Gut22 with lipid bilayers was studied and the conformation changes of Gut22 and Gut22Ana upon interacting with liposomes were studied by the method of circular dichroism analysis.
基金
Project supported by the National Natural Science Foundation of China.