摘要
A deep representation theorem of random conjugate spaces and its several important applications are given. As an application of the representation theorem, the following basic theorem is also proved: let B* be the conjugate space of a Banach space B, be a given probability space. Then every B*-valued w*-u-measurable function defined on is w*-equivalent to a B*-valued u-measurable function defined on if and only if B* has the Radon-Nikodym property with respect to
A deep representation theorem of random conjugate spaces and its several important applications are given. As an application of the representation theorem, the following basic theorem is also proved: let B* be the conjugate space of a Banach space B, be a given probability space. Then every B*-valued w*-u-measurable function defined on is w*-equivalent to a B*-valued u-measurable function defined on if and only if B* has the Radon-Nikodym property with respect
基金
Project supported by the National Natural Science Foundation of China
the Natural Science Foundation of Fujian Province of China.