摘要
Superplastic forming of a thin sheet into complex shape is an important manufacturing process especially in aerospace industry. The main objective of modeling the superplastic forming process is to predict the forming pressure-time cycle to maintain the optimum strain rate and the resulting thickness distribution. There have been many attempts to model superplastic forming process using the various techniques including finite element method. However, most of these attempts so far have disregarded the strain hardening effect which occurs in several superplastic materials. In this study,we have used ABAQUS finite element code to predict the suitable processing variables during an axisymmetric cup forming of Supral 100 and 7075Al alloys to examine the strain hardening effects on forming. The performance of numerical results was then compared with the experimental results.
Superplastic forming of a thin sheet into complex shape is an important manufacturing process especially in aerospace industry. The main objective of modeling the superplastic forming process is to predict the forming pressure-time cycle to maintain the optimum strain rate and the resulting thickness distribution. There have been many attempts to model superplastic forming process using the various techniques including finite element method. However, most of these attempts so far have disregarded the strain hardening effect which occurs in several superplastic materials. In this study,we have used ABAQUS finite element code to predict the suitable processing variables during an axisymmetric cup forming of Supral 100 and 7075Al alloys to examine the strain hardening effects on forming. The performance of numerical results was then compared with the experimental results.