摘要
The metallographic observation and analyses of TiAl alloy cast ingots revealed that the preferably arranged γ/α_2 lamellar microstructure can be obtained in columnar dendritic cast ingot through controlling the Ti/Al atomic ratio. The experiments conf irmed that the preferably arranged γ/α_2 lamellar microstructure has excellent tensile strength and fracture toughness and tolerant tensile plasticity when the stress is applied parallel to the γ/α_2 interface.Based on these results and the working condition of the turbine blades,a component-specific alloy design has been suggested.
The metallographic observation and analyses of TiAl alloy cast ingots revealed that the preferably arranged γ/α_2 lamellar microstructure can be obtained in columnar dendritic cast ingot through controlling the Ti/Al atomic ratio. The experiments conf irmed that the preferably arranged γ/α_2 lamellar microstructure has excellent tensile strength and fracture toughness and tolerant tensile plasticity when the stress is applied parallel to the γ/α_2 interface.Based on these results and the working condition of the turbine blades,a component-specific alloy design has been suggested.