摘要
Let F<sub>q</sub> be a finite field of q elements, where q=p<sup>1</sup>, l≥1, p is an odd prime. Let c<sub>i</sub>(i=1,...,n) be nonzero elements of F<sub>q</sub>. Suppose that d<sub>1</sub>...,d<sub>n</sub> are fixed positive integers andd<sub>i</sub> divides q--1 for all i. Let N be the number of solutions (x<sub>1</sub>,...,x<sub>n</sub>) ∈F<sub>q</sub><sup>n</sup> to the
<正> Let Fqbe a finite field of q elements, where q=p1, l≥1, p is an odd prime. Let ci(i=1,...,n) be nonzero elements of Fq. Suppose that d1...,dnare fixed positive integers anddidivides q--1 for all i. Let N be the number of solutions (x1,...,xn) ∈Fqnto the diagonalequation
基金
Project supported by the National Natural Science Foundation of China.