期刊文献+

Convergence of viscosity solutions for 2×2 hyperbolic conservation laws with one characteristic field linearly degenerate on some zero measure sets

Convergence of viscosity solutions for 2×2 hyperbolic conservation laws with one characteristic field linearly degenerate on some zero measure sets
原文传递
导出
摘要 Suppose that the two eigenvalues of system (0.1) are λ<sub>1</sub>(u, v), λ<sub>2</sub>(u, v), the corres-ponding Riemann invariants are w=w(u, v), z=z(u, v), and w=w(u, v), z=z(u, v) give a bijective smooth mapping from (u, v) plane onto (w, z) plane. Throughout this note, we always suppose that A<sub>1</sub> u<sub>0</sub>(x), v<sub>0</sub>(x) are bounded measurable functions. A<sub>2</sub> λ<sub>1</sub>(u, v), λ<sub>2</sub>(u, v)∈C<sup>1</sup> and system (0.1) are strictly hyperbolic, i.e. λ<sub>1</sub>(u, v)【λ<sub>2</sub>(u, v).
作者 朱长江
出处 《Chinese Science Bulletin》 SCIE EI CAS 1996年第1期11-16,共6页
基金 Project supported by the National Natural Science Foundation of China.
关键词 LINEARLY DEGENERATE theory of compensated COMPACTNESS entropy-entropy flux PAIRS WEAK solutions. linearly degenerate, theory of compensated compactness, entropy-entropy flux pairs, weak solutions.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部