期刊文献+

用有限差分法解层流问题的新型计算方法

A New Computational Method for Incompressible Navier-Stokes Equations Using Finite-Difference
下载PDF
导出
摘要 本文介绍了一种新型的有限差分方法求解层流问题的计算方法,本方法采用时间和空间的中心差分格式,并且与数值随体坐标转换相结合,在非错位网格上来解纳维-斯托克斯方程。经过对DrivenCavity这一标准问题的求解后,与有关文献报道的数据比较,以及经实际的试验观察发现,该计算方法稳定准确,结果可靠。 A new method of computational fluid dynamics based on finite-difference is introduced. Second order time and space central finite-differencing,associated with numerical grid generation are used in the new method on a non-staggered curvilinear grid system to solve the problems which are governed by NavierStokes Equations. The computational results on the standard problem of driven cavity are compared with both the experimental observations and with that of the literature. It is found that this method is stable and the results are accurate and reliable.
作者 曹振雷
出处 《中国造纸学报》 CAS CSCD 北大核心 1995年第S1期61-68,共8页 Transactions of China Pulp and Paper
关键词 有限差分 计算方法 纳维-斯托克斯方程 层流 finite-difference, computational method, NavierStokes equations,laminar flow
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部