摘要
本文研究了一类一阶非线性中立型变时滞泛函微分方程d/dt[y(t)-sum from i=1 to m(p_i(t)y(t-r_i(t))]+integral from a to b(Q(t,ξ)F(y[g(t,ξ)])do(ξ))=0 (b>a)解的渐近性和振动性,得到了一些充分性定理,推广和改进了文[1],[2],[3]和[4]的主要结果。
In this paper, We study the asymptotic and oscillatory behaviors of the following first order nonlinear neutral functional differential equation d/dt[y(t) - pi(t)y(t - ri (t))]+ Q(t,ξ)F(y[g(t,ξ)])do(E) = 0 (b > a). We obtain sone sufficient theorms. The results of this paper generalize and improve the main results of [1], [2], [3] and [4].
出处
《韩山师范学院学报》
1995年第3期15-21,共7页
Journal of Hanshan Normal University
关键词
中立型泛函微分方程
渐近性
振动性
变时滞
Neutral functional differential equation, Asymptotic behavior, Oscillatory behavior, Variable delay.