期刊文献+

用主成分分析研究QuickBird遥感图像变形机制

Deformation Mechanism of QuickBird Remote Sensing Image Using Principal Components Analysis
下载PDF
导出
摘要 以深圳市区一景QuickBird Pan波段遥感图像(总行列数为26574×28606,对应15.944km×17.164km的实地范围)为研究对象,利用深圳市GPS虚拟参考网络定位系统,以厘米级精度测定了65个在图像上能有效识别的地面控制点三维坐标。计算65个控制点的重心点,在统计各控制点到重心点之间真实距离和在变形图像上对应距离偏差的基础上,分析可能影响QuickBird Pan波段遥感图像像点位移的主要因子。利用主成分分析从这些因子中提取影响图像变形的主成分,根据所得主成分建立QuickBird Pan波段遥感图像变形机制的定量估测模型,使图像变形估测精度得到一定改善。所得结果对研究高空间分辨率遥感图像变形纠正算法有一定参考价值。 With one scope of QuickBird panchromatic band remote sensing image(total rows and columns are 26 574 and 28 606,corresponding to the real region of 15.994 km×17.164 km) in Shenzhen urban area as research object,using the GPS virtual reference network positioning system of Shenzhen urban area to survey the three-dimensional coordinates of 65 GCPs which are easily recognized on the image,the precision of surveying GCPs is centimeter-level.Calculate the point of center of gravity of 65 GCPs.On the basis of statistic of the deviation between the real distance of each GCP to the point of center of gravity and the corresponding distance on deformed image,analyzing the main factors that possibly influence the pixel displacement of QuickBird panchromatic band remote sensing image.The principal components are extracted by using principal components analysis.The quantitative estimation model used to describe the deformation mechanism of QuickBird panchromatic band remote sensing image is established according to the principal components,which can improve the estimation precision of image deformation to a certainty.The result will have some reference value to research calibration algorithm of high spatial resolution remote sensing image.
出处 《林业科学》 EI CAS CSCD 北大核心 2011年第10期76-82,共7页 Scientia Silvae Sinicae
基金 国家自然科学基金项目(30872023) 武汉大学国家重点实验室开发基金
关键词 像点位移 变形机制 主成分分析 pixel displacement deformation mechanism principal components analysis
  • 相关文献

参考文献8

  • 1李崇贵,李春干.森林资源调查林区GPS控制网的试验研究[J].林业科学,2005,41(1):19-24. 被引量:18
  • 2李崇贵,赵宪文.林区地形起伏对Spot5遥感图像几何精校正的影响[J].北京林业大学学报,2004,26(2):6-10. 被引量:10
  • 3于秀林,任雪松.多元统计分析.北京:中国统计出版社,2006,32-48.
  • 4Fraser C S, Yamakawa T. 2004. Insights into the affine model for high- resoiutlon satellite sensor orientation. ISPRS Journal of Photogrammetry & Remote Sensing,58 (5/6) : 275 - 288.
  • 5Grodecki J, Dial G. 2003. Block adjustment of high-resolution satellite images described by rational polynomials. Photogrammetric Engineering & Remote Sensing,69( 1 ) : 59 -68.
  • 6Pfeifer N. 2005. A subdivision algorithm for smooth 3D terrain models. ISPRS Journal of Photogrammetry & Remote Sensing,59 (3) : t 15 - 127.
  • 7Shi W, Ahmed S. 2003. Analysis of terrain elevation effects on lkonos imagery rectification aeeuraey by using non-rigorous models. Photogrammetrie Engineering & Remote Sensing,69(12) : 1359 - 1366.
  • 8Yastikli N, Jacobsen K. 2005. Influence of system calibration on direct sensor orientation. Photogrammetric Engineering & Remote Sensing, 71(5) : 629 -633.

二级参考文献12

  • 1李崇贵.手持式GPS接收机在林区定位的稳定性研究[J].深圳职业技术学院学报,2003,2(1):6-10. 被引量:7
  • 2孙家柄.遥感原理、方法和应用[M].测绘出版社,1996,10..
  • 3朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4..
  • 4赵宪文 李崇贵.基于“3S”的森林资源定量估测b[M].北京:中国科学技术出版社,2001.70-90.
  • 5Sumith P. Distribution of errors in a classified map of satellite data.Geoarto Internatimal , 1999,14(4) :69-79.
  • 6Peter S, Stuart P. Determining Forest Structural Attributes Using an Inverted Geometric - Optical Model in Mixed Eucalypt Forests. Southeast Queensland, Australia:Elesevier Science Inc,2000. 141-157
  • 7Ryuei N, Shojiro T. Accuracy and inaccuracy assessments in land-Cover classification. IEEE Transactions on Geoscience and Remote Sensing,1999,37(1) :491-497
  • 8Low H K, Chuah H T, Ewe H T. A neural network landuse classifier for SAR images using textural and fraetal information. Geocarto International, 1999,14(l) :67-73
  • 9李崇贵,赵宪文,蔡体久.遥感区域大小对森林蓄积估测影响规律的研究[J].北京林业大学学报,2001,23(4):29-34. 被引量:10
  • 10李崇贵,石强,赵宪文,田永林.用岭估计研究以RS和GIS为基础的森林郁闭度估测[J].林业科学,2001,37(5):24-30. 被引量:28

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部