摘要
hree kinds of devices of drag reduction are presented swept wingtip,stage by stage swept wingtip and downbend wingtip. The effects of changing geometryparameters of the swept wingtip on the drag reducing are also presented. Wind-tunnelexperiment results indicate that a properly designed swept wingtip results in an incre-ment in induced efficiency of 4%~ 7% and that swept wingtip can increase longitudinalstatic-stability. Water-tunnel experiment results indicate that the reason for drag re-ducing of swept wingtip is that when the angle of attack is not zero, the strong end vor-tex of the wing is weakened by the combined effect of the leading edge and trailing edgevortices of the swept wingtip.
hree kinds of devices of drag reduction are presented swept wingtip,stage by stage swept wingtip and downbend wingtip. The effects of changing geometryparameters of the swept wingtip on the drag reducing are also presented. Wind-tunnelexperiment results indicate that a properly designed swept wingtip results in an incre-ment in induced efficiency of 4%~ 7% and that swept wingtip can increase longitudinalstatic-stability. Water-tunnel experiment results indicate that the reason for drag re-ducing of swept wingtip is that when the angle of attack is not zero, the strong end vor-tex of the wing is weakened by the combined effect of the leading edge and trailing edgevortices of the swept wingtip.