摘要
本文基于带有物理基的非笛卡儿张量分析为基础的广义矩阵法,在非正交的螺旋线坐标系中,推导出螺旋状管中充分发展、层流流动的非线性连续性方程、Navier -Stokes方程组和能量方程。并用 SIMPLE算法解出了上述一系列方程。结果表明:对大普朗特数的流体,桡率将显著改变等温轮廓线的形状。随着普朗特数的增加,挠率将使螺旋状管的等温轮廓线变形加剧。并使努塞尔数大小减小。
Using the generalized matrix method based on nonCartesian tensor analyses with physical base, in a nonorthogonal helical coordinate system , the authors derived the fully developed laminar flow of constant fluid properties nonlinear equations (e. g. continuity equation, Navier-Stokes equations and energy equation) in a helicoidal pipe. And solved these nonlinear partial differential equations by the SMPIE algorithm. As the result shows, When Prandtl number increasing, That the torsion will distort the shape of the isothermal contour, and the Nusselt number may remarkably discreas-ing.
出处
《南昌工程学院学报》
CAS
1994年第S1期279-284,共6页
Journal of Nanchang Institute of Technology
基金
国家自然科学基金 (编号58976287)
关键词
非笛卡几张量
螺旋线坐标系
螺旋状管
普朗特数
挠率
等温轮廓线
NonCartesian tensor
Helicoidal coordinate system
Helicoidal pipe
Prandtl number
Torsion
Isothermal contour.