摘要
设f是B={Z∈Cn;|z|<1}上的全纯函数,Rmf是高阶径向导数,而Dsf(s>0)是f的s阶分数次导数,本文证明f是Bloch函数当且仅当sup{|Rmf(z)|(1-|z|2m|<+∞或者 作为相关的结果,我们用Bloch函数的积分性质刻划了α-Garleson测度,另一方面我们得到了Bloch函数关于α-Carlesm测度的新特征.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1994年第3期351-360,共10页
Acta Mathematica Scientia
基金
国家自然科学基金