摘要
提出一种基于序贯预测误差方法(SPE)的多层神经网络(MNN)的学习算法。经模拟计算,它比传统的基于最陡下降方法的误差反传(SDBEP)算法具有更好的收敛性能。并对这两种算法进行了模拟计算的比较.
In this paper, a learning algorithm based on the sequencial predict error method (SPE) for a multilayered neural network (MNN) is derived. Simulation computations show that it converges faster than the conventional steepest descent backwards error propagation (SDBEP) algorithm. Comparison of these two algorithms is also made through simulation computations.
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
1994年第S2期11-16,共6页
Periodical of Ocean University of China
关键词
神经网络
学习算法
序贯预测误差
Neural network
learning algorithm
sequencial predict error