摘要
本文使用一个六阶三自由度的非线性数学模型,研究单点系泊(SPM)系统“鱼尾”运动,对系统的平衡状态,及其在风向角、风速、流速、缆绳长度等参数变化时规律,进行了一系列的分析,同时,指出了静平衡系泊力的变化规律。为了研究系统平衡态的稳定性,文中选择缆绳长度l为分叉参数,分析了在不同参数值下,系统Jacobian矩阵的各组特征值的变化情况,并求出了系统的Hopf分叉点。最后,本文利用Hopf分叉理论,求出了系统的Hopf分叉周期解。
In this paper the horizontal slow oscillation of a SPM system is investigated by using a 6 order, 3 degree of freedom and non-linear mathematical model. The effects of wind direction and speed, current speed and mooringlines' length on the system's stability are systimatically analized and the variation of mooring force in static equilibrium is given as well. In order to investigate the stability of the system, the mooring lines' length is chosen as a bifurcation paranicter, the variation of system's Jacobian matrix eigen values is analized for different parameters and Hopf bifurcation points of the system are found.Based on the Hopf bifurcation theory, the periodic solutions of Hopf bifurcation are also found.
出处
《海洋工程》
CSCD
北大核心
1994年第1期26-41,共16页
The Ocean Engineering
基金
国家自然科学基金
关键词
系统稳定性
“鱼尾”运动
HOPF分叉
system's stability
horizontal slow oscillation
Hopf bifurcation