摘要
设M ̄n是2n+1维Sasakian空间型M ̄(2n+1)(C)中n维极小的积分子流形.本文给出了M ̄n为全测地的一些Pinching条件.
Let M ̄n be an n-dimensitinal minimal integral submanifold in a(2n+1)-dimensional sasakian space form M ̄(2n+1)(C).In this paper,some pinchingconditions which M ̄n is totally geodesic submanifold are given.
出处
《辽宁大学学报(自然科学版)》
CAS
1994年第4期17-22,共6页
Journal of Liaoning University:Natural Sciences Edition