摘要
The existence of global weak solutions to the periodic boundary problem or the initial value problem for the nonlinear Pseudo-hyperbolic equation u_(tt)-[a_1+a_2(u_x)^(2m)]u_(xx)-a_3u_(xxt)=f(x,t,u,u_x) is proved by the method of the vanishing of the additional diffusion terms, Leray-Schauder's fixedpoint argument and Sobolev's estimates,where m≥1 is a natural number and a_i>0(i=1,2,3)are constants.
The existence of global weak solutions to the periodic boundary problem or the initial value problem for the nonlinear Pseudo-hyperbolic equation u_(tt)-[a_1+a_2(u_x)^(2m)]u_(xx)-a_3u_(xxt)=f(x,t,u,u_x) is proved by the method of the vanishing of the additional diffusion terms, Leray-Schauder's fixedpoint argument and Sobolev's estimates,where m≥1 is a natural number and a_i>0(i=1,2,3)are constants.