期刊文献+

INITIAL VALUE PROBLEM FOR A CLASS OF NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS

INITIAL VALUE PROBLEM FOR A CLASS OF NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS
原文传递
导出
摘要 The existence of global weak solutions to the periodic boundary problem or the initial value problem for the nonlinear Pseudo-hyperbolic equation u_(tt)-[a_1+a_2(u_x)^(2m)]u_(xx)-a_3u_(xxt)=f(x,t,u,u_x) is proved by the method of the vanishing of the additional diffusion terms, Leray-Schauder's fixedpoint argument and Sobolev's estimates,where m≥1 is a natural number and a_i>0(i=1,2,3)are constants. The existence of global weak solutions to the periodic boundary problem or the initial value problem for the nonlinear Pseudo-hyperbolic equation u_(tt)-[a_1+a_2(u_x)^(2m)]u_(xx)-a_3u_(xxt)=f(x,t,u,u_x) is proved by the method of the vanishing of the additional diffusion terms, Leray-Schauder's fixedpoint argument and Sobolev's estimates,where m≥1 is a natural number and a_i>0(i=1,2,3)are constants.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第2期166-173,共8页 应用数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部