期刊文献+

Infinite Dimensional Widths and Optimal Recovery of Some Smooth Function Classes of L_p(R) in Metric L(R)

Infinite Dimensional Widths and Optimal Recovery of Some Smooth Function Classes of L_p(R) in Metric L(R)
原文传递
导出
摘要 1 Introduction Let r be a natural number, P<sub>r</sub>(t)=(t-t<sub>j</sub>), t<sub>j</sub>∈R, j=1,…, r, and P<sub>r</sub>(D)(D=-d/(dt)) be the induced differential operator of P<sub>r</sub>(t). Let 1≤p, q, s≤∞. We introduce some new classes of smooth functions defined on R as follows: W<sub>pqs</sub>(P<sub>r</sub>)=:{f∈L<sub>S</sub>(R); f<sup>(r-1)</sup> is locally absolutely continuous on R and ‖P<sub>r</sub>(D)f‖<sub>pq</sub>≤1}. Here the norm ‖·‖<sub>pq</sub> as in Ref. [1] is defined
作者 刘永平
出处 《Chinese Science Bulletin》 SCIE EI CAS 1993年第20期1678-1682,共5页
基金 Project supported by the National Natural Science Foundation of China.
关键词 INFINITE dimensional width OPTIMAL recovery OPTIMAL SUBSPACE MINIMAL information diameter algorithm sampling point INFINITE DIMENSIONAL WIDTH OPTIMAL RECOVERY OPTIMAL SUBSPACE MINIMAL INFORMATION DIAMETER ALGORITHM SAMPLING POINT
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部