摘要
一、利用正三角形的外心和重心重合解题大家知道,正三角形的外心和重心是重合的,那么它的逆命题是否成立呢?回答是肯定的。即:△ABC的外心和重心重合,则△ABC为正三角形。证明:设G是△ABC的外心,连AG并延长交BC于M∵ △ABC的外心和重心重合∴ G也是△ABC的重心∴ M是BC的重心又∵ G是外心∴ GM⊥BC∴ AM⊥BC∴ AB=AC同理可证,AB=BC∴ △ABC是正三角形利用正三角形的这两个性质,可以顺利地解决一些较难的三角题.
出处
《苏州教育学院学报》
1993年第1期73-75,共3页
Journal of Suzhou College of Education