期刊文献+

混合分布的识别性及其应用 被引量:9

IDENTIFIABILITY OF MULTIVARIATE MIXED DISTRIBUTI(?) AND ITS APPLICATIONS
下载PDF
导出
摘要 设(Y_1,Y_2)是非负的二维随机变量,有联合分布函数F(y_1,y_2),设Z=min(Y_1,Y_2),定义随机变量I=1;2;3,分别对应于Y_1<Y_2;Y_1>Y_2;Y_1=Y_2时.记p_i=P(I=i),f_i(·)为给定I=i时Z的条件密度(i=1;2;3).给定可识最小值(Z,I)的联合密度函数P_iJ_i(·)(i=1;2;3),得到F(·,·)是混合分布时,F(·,·)用P_if_i(·)来表示的一个显式表达式.对三维及以上情形,得到类似的结果.特别,把识别基本定理应用于多元Marshall-Olkin型指数分布的参数估计,得到了基于观察值(Z_jI_j)(j=1,2,…,n)的参数的极大似然估计及矩估计,并且证明了极大似然估计具有联合完备充分的,渐近无偏的,均方误差一致的,及渐近正态性特性,修正估计恰好是Arnold估计,它是唯一的一致最小方差无偏估计,且同时是渐近有效估计,本文还指出了矩估计方法的不唯一性. Let Y_1,…,Y_m be m random variables with joint distribution function F(y_1,y_2,…,y_m) (y_1 > 0, …,y_m > 0). LetZ = min (Y_1, …,Y_m), and define I= {j_1,…,j_s} if Y_(j_1)=Y_(j_2) =…= Y_(j_s) < Y_j (for all j ≠ i_u, u = 1,…,s). The problem of identifying the distribution function F(y_1,y_2,…, y_m), with the given joint density of (Z,I), is considered when F is a mixed distribution. Without any further regularity assumptions, the distribution F is expressed explicitly ar. functionals of p{j_1,…,j_s}f{j_1,…,j_s}(·)(1≤j_1<j_2 <…<j_sm,s=1,…,m). As applications, suppose (Y_(1j),…, Y_(my)) (j=1,…,m) is a sample from the Multiveriate Exponential Distribution of the MarshallOlkin form with the parameters λ_(j_1…j_s)(1≤j_1<…<j_s≤m,s= 1,…,m), the likihood function of the observations (Z_j,I_j) (j = 1,…,n) is given. It's shown that the maxium likelihood estimator of the λ_(j_1…j_s) s is asymptotically unbiased, joint complete and sufficient, mean squared error consistent and has the asymptotic normality property. The adjusted estimator is just the Arnold's estimator. It is pointed out that the mothed of moments estimators is not unique.
作者 李国安
机构地区 宁波大学数学系
出处 《宁波大学学报(理工版)》 CAS 1993年第2期28-38,共11页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 宁波大学青年科学基金
关键词 混合分布 指数分布 识别性 极大似然估计 矩估计不唯一性 mixed distribution exponential distribution identifiability maximum likelihood estimation moment estimation nonuniqueness
分类号 O [理学]
  • 相关文献

同被引文献39

  • 1李国安.二元Weinman型指数分布的特征及其应用[J].Journal of Mathematical Research and Exposition,2005,25(2):337-340. 被引量:12
  • 2李国安.多元Marshall-Olkin型指数分布的特征及其参数估计[J].工程数学学报,2005,22(6):1055-1062. 被引量:17
  • 3王立洪,李国安.多元Proshan-Sullo型指数分布的特征[J].宁波大学学报(理工版),2006,19(3):360-362. 被引量:5
  • 4Anderson T W, Ghurye S G. Identification of parameters by the distribution of a maximum random variable[J]. Royal Statist Soc, 1977, 39(B):337-342.
  • 5Basu A P, Ghosh J K. Identifiability of the multinorma and other distributions under competing risks model[J]. Journal of Multivariate Analysis, 1978, 8(3):413-429.
  • 6Proschan F, Sullo R Estimating the parameters of a bivariate exponential distribution in several sampling situations[C]. Proschan F'Serfling R. Statistical Analysis of Life Length, Philadelphia: SIAM, 1974:423-440.
  • 7Friday D S, Patil G E A bivariate exponential model thapplications to reliability and computer generation of random variables[C]. Tsokos C, Shimi L. Theory and Applications of Reliability, New York, 1977:527-549.
  • 8Elnaggar M, Mukherjea A. Identification of the para- meters of a trivariate normal vector by the distribution of the minimum[J]. Journal of Statistical Planning and Inference, 1999, 78:23-37.
  • 9Veenus P,Nair K R M.Characterization of a bivariate Pareto distribution[J].J Ind Statist Assoc,1994,32:15- 20.
  • 10Marshall A W,Olkin I.A multivariate exponential distribution[J].Journal of the American Statistical Association,1967,62(1):30-44.

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部