期刊文献+

ON STABILITY OF m-VARIATE C^1 INTERPOLATION

ON STABILITY OF m-VARIATE C^1 INTERPOLATION
下载PDF
导出
摘要 A.simplicial mesh(triangulation)is constructed that generalizes the two-dimensional 4-direction mesh to R^m.This mesh,with symmetric,shift-invariant values at the vertices,is shown to admit a bounded C^1 interpolant if and only if the alternating sum of the values at the vertices of any 1-cube is zero.This im- plies thai interpolation at the vertices of an m-dimensional,simplicial mesh by a C^1 piecewise polynomial of degree m+1 with one piece per simplex is unstable. A.simplicial mesh(triangulation)is constructed that generalizes the two-dimensional 4-direction mesh to R^m.This mesh,with symmetric,shift-invariant values at the vertices,is shown to admit a bounded C^1 interpolant if and only if the alternating sum of the values at the vertices of any 1-cube is zero.This im- plies thai interpolation at the vertices of an m-dimensional,simplicial mesh by a C^1 piecewise polynomial of degree m+1 with one piece per simplex is unstable.
出处 《Analysis in Theory and Applications》 1993年第1期18-32,共15页 分析理论与应用(英文刊)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部