期刊文献+

微桥结构PZT厚膜红外探测器研究

Study of PZT thick film infrared detector with micro-bridge structure
下载PDF
导出
摘要 利用KOH溶液腐蚀结合SF6气体干法刻蚀工艺制备了锆钛酸铅(PbZr0.3Ti0.7O3,PZT)厚膜热释电红外探测器,得到了器件Si基背面完全悬空的微桥绝热结构。使用由斩波器调制的黑体辐射,测试了探测器在低频段的电压响应率、噪声等效功率和探测率等参数。结果表明,探测器在调制频率为5.3 Hz时的电压响应率约为4.5×102V/W;在调制频率为167.3 Hz时,其探测率达7.5×108 cm.Hz1/2/W;PZT厚膜探测器的热时间常数为51 ms,与PZT陶瓷器件相比小约一个数量级,有利于其在高频响应方面的应用。 A lead zirconate titanate (PbZr0.3Ti0.7O3,PZT) thick film pyroelectric infrared detector with micro-bridge thermal isolation structure was fabricated on Si substrate. The thermal isolation structure was fabricated by KOH wet etching and SF6 dry etching at the backside of the substrate. The voltage response rate, noise equivalent power and detectivity of the detector at low frequency were measured with blackbody radiation modulated by a chopper. The results show that the voltage response rate and detectivity of the detector reach their largest value (4.5×102 V/W and 7.5×108 cm·Hz1/2/W, respectively) at 5.3 Hz and 167.3 Hz, respectively. The thermal-time constant of the detector is 51ms, one magnitude lower than that of PZT ceramic detectors. The thermal isolation structure of the PZT thick film detector is beneficial to its high frequency response applications.
出处 《电子元件与材料》 CAS CSCD 北大核心 2011年第12期13-16,共4页 Electronic Components And Materials
基金 工业与信息化部电子信息产业发展基金资助项目(No.2010301)
关键词 红外探测仪 PZT厚膜 微桥结构 探测率 infrared detector PZT thick film micro-bridge structure detectivity
  • 相关文献

参考文献14

  • 1Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique, 1955, 5(1): 7-17.
  • 2MICHAEL K, NICK H, ALAN G R, et al. A novel micromachined pump based on thick-film piezoelectric actuation [J]. Sens Actuators A, 1998, 70: 98-103.
  • 3CHANG C C, TANG C S. Integrated pyroelectric infrared sensor with a PZT thin film [J]. Sens Actuators A, 1998, 65: 171-174.
  • 4帅矗.基于Bjf薄膜的非制冷红外单完探测器的研究[D].成都:电子科技大学.2009.
  • 5夏冬林,刘梅冬,曾亦可,陈实,赵修建.PZT铁电厚膜声纳换能器阵列的研制[J].压电与声光,2004,26(3):196-199. 被引量:6
  • 6曾亦可,刘梅冬,黄焱球.Si基微绝热结构PLZT厚膜红外探测器阵列[J].材料研究学报,2004,18(3):308-314. 被引量:3
  • 7Armero F. Recent advances in the analysis and numerical simulation of strain localization in inelastic solid[A]. Proceedings of Computational Plasticity IV[C]. The International Center for Numerical Methods in Engineering, Barcelona, Spain, 1995, 547-561.
  • 8陈兢.ICP体硅深刻蚀中侧壁形貌控制的研究[J].中国机械工程,2005,16(z1):476-478. 被引量:12
  • 9Desrues J. Localisation Patterns in Ductile and Brittle Geomaterials[A]. Material Instabilities in Soils[M]. Edited by Rene de Borst snd Erik, John Wiley & Sons Ltd, 1998, 137-158.
  • 10Rice J R. On the stability of dilatant hardening for saturated rock mass[J]. Journal of Geophysical Research, 1975, 80(11): 1 531-1 536.

二级参考文献36

  • 1[1]McAuley S, Ashraf S, Atabo L, et al. Silicon Micromachining Using a High Density Plasma Source.Journal of Applied Physics, 2001, 34: 2769~2774
  • 2[2]Laermer F, Urban A. Challenges, Developments and Applications of Silicon Deep Reactive Ion Etching. Microelectronic Engineering, 2003, 67-68:349~355
  • 3[4]Yan Guizhen, Zhu Yong, Wang Chengwei, et al.Integrated Bulk Micromachined Gyroscope Using Deep Trench Isolation Technology. MEMS2004,Maastricht, the Netherlands, 2004
  • 4J.Cardin, D.Leduc, C.Boisrobert, Hartmut W. Gundel, Proc. SPIE Int. Soc. Opt. Eng., 5122, 371(2003)
  • 5Baomin Xu, Yaohong Ye, L. Eric Cross, J. Appl. Phys., 87(5), 2507(2000)
  • 6Yutaka Ohya, Satoru Itoda, Takayuki Ban, Yasutaka Takahashi, Jpn. J. Appl. Phys. Part 1, 41(1),270(2002)
  • 7Xiyun He, Aili Ding, Pingsun Qiu, Weigen Luo, Proc. SPIE Int. Soc. Opt. Eng., 4086, 609(2000)
  • 8Jun Akedo, Maxin Lebedev, Jpn. J. Appl. Phys. Part 1, 41(11B), 6980(2002)
  • 9D.L.Xia, M.D.Liu, Y.K.Zeng, C.R.Li, Materials Science and Engineering: B, 87(2), 160(2001)
  • 10S.H.Kim, J.S.Lee, H.C.Choi, Y.H.Lee, Electron Device Letters IEEE, 20(3), 113(1999)

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部