摘要
现行《数学分析》和《高等数学》各本教材中,都有二元函数的可微性充分条件的定理:如果函数z=f(x,y)的编导数在点P(x,y)连续,则函数在该点的全微分存在.由于此定理要求两个偏导数在点(x<sub>0</sub>,y<sub>0</sub>)都连续.这对函数f(x,y)的要求是比较苛刻的,可是我们经常会遇到函数u=f(z,y)在点(x<sub>0</sub>,y<sub>0</sub>)的某一个偏导数存在而不连续,而另一个偏导数存在且连续.遇到这类函数就无法用可微性充分条件定理去判定函数u=f(x,y)在点(x<sub>0</sub>,y<sub>0</sub>)是否可微.
出处
《大学数学》
1993年第S2期17-20,共4页
College Mathematics