期刊文献+

用“退化”的观点求两动点间距离的最值

下载PDF
导出
摘要 中学生对求一定点到二次曲线上的动点间距离的最值问题,还觉得有章可循,但对求两动点间距离的最值问题,往往束手无策。笔者在教学中引导学生用“退化”的观点去考察这类问题,收到良好的效果,特别当其中一点在圆周上移动时,问题得到圆满的解决。现将一般解法综述如下。设点P在曲线y=f(x)上移动,点Q在圆周(x-x<sub>0</sub>)<sup>2</sup>+(y-y<sub>0</sub>)<sup>2</sup>=r<sup>2</sup>上移动,求点P、Q间距离的最值。当圆的半径很小时,距离|PQ|与|OP|近似相等。当半径逐渐缩短到0,圆退化为一点,此时|PQ|=|OP|。问题转换成求定点O到动点P的距离的最值。现在再回到原来的问题,寻找|PQ|的最值与|OP|的最值问题间的联系,容易猜测,
作者 周根清
出处 《中学教研(数学版)》 1993年第8期17-19,共3页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部