摘要
本刊92年第五期刊登了一篇题为“周期函数与其导函数的周期”的文章,该文证明了下述定理。定理非常值周期函数f(x)在R上有定义且连续,而f′(x)存在且可积,则f′(x)也为周期函数,并且f(x)与f′(x)有相同的周期。并举下例说明其应用。例设f(x)=x-2k,(2k≤r【2k+1) -x+2(k+1),k∈2 (2k+1≤x【2k+2) 则f(x)与f′(x)有相同的周期2。(见原文例3)。显然,上例中的f′(x)当x=k时,不存在,故上述例不满足定理之条件,故用上述定理得出其结果不妥。易见,条件“f′(x)存在且可积”是相当强的,以致于象f(x)