摘要
柯老和孙琦教授在[1]中提出了一个猜想:任意2n-1(n≥1)个有理整数中必有n个整数之和能为n整除。本文目的是将这一猜想推广到任一代数数域的代数整数范围中去。
Ke Chao and Sun Qi even conjectured that among any given 2n- 1 Integers a1,a2 ,…, a2n-1 there must be n integers a11,a12,…,a1n which can be Choosed exactly by n, such that.
The aim of the present paper is to expand the conjecture to the ring of atgebraic integers of degree of n.
出处
《北京石油化工学院学报》
1993年第1期10-14,共5页
Journal of Beijing Institute of Petrochemical Technology